TUPROQ NPK SENSORI VA ARDUINO: O'SIMLIKLARNI SOG‘LOM O‘STIRISH UCHUN AQLLI MONITORING TIZIMI
Keywords:
Arduino, NPK sensor, azot, fosfor, kaliy, OLED display, RS485(MAX845) moduli, Bluetooth.Abstract
Ushbu maqolada qishloq xo‘jaligida tuproqning azot (N), fosfor (P) va kaliy (K) tarkibini aniqlash uchun qo‘llaniladigan sensorlar va zamonaviy texnologiyalar tahlil qilinadi. Qishloq xo‘jaligida tuproq sifatini va unumdorligini oshirish maqsadida innovatsion texnologiyalarni qo‘llash, ayniqsa, an'anaviy vaqti o‘tkazuvchi va qimmat laboratoriya usullaridan voz kechishga imkon beradi. Sensor texnologiyalarining rivojlanishi tuproqning ozuqa moddalari haqida aniq va tezkor ma'lumotlarni olishni ta'minlaydi. Shu bilan birga, bu texnologiyalar orqali olingan natijalar fermerlarga real vaqtda to‘g‘ri qarorlar qabul qilish imkoniyatini yaratadi. Arduino va Soil NPK Sensor (Tuproq NPK datchigi) kombinatsiyasidan foydalanib, tuproq tarkibini o‘lchash va ushbu ma’lumotlarni OLED displeyda yoki Android ilova orqali ko‘rsatish mumkin. Ushbu maqolada Soil NPK Sensorining ishlash tamoyillari, texnik xususiyatlari va Arduino bilan integratsiyasi batafsil yoritiladi.
Foydalanilgan adabiyotlar:
Lou, X., Zhang, L., Zhang, X., Fan, J., & Li, C. (2020, November). Design of intelligent farmland environment monitoring system based on wireless sensor network. In Journal of Physics: Conference Series (Vol. 1635, No. 1, p. 012031). IOP Publishing.
Li L. et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction //Acs Catalysis. – 2019. – Т. 9. – №. 4. – С. 2902-2908.
Visvesvaran, C., Kamalakannan, S., Kumar, K. N., Sundaram, K. M., Vasan, S. M. S. S., & Jafrrin, S. (2021, October). Smart greenhouse monitoring system using wireless sensor networks. In 2021 2nd international conference on smart electronics and communication (ICOSEC) (pp. 96-101). IEEE.
González-Santos S. P. Creating Life: An Embryo Assembly Line //Beauty and Monstrosity in Art and Culture. – Routledge. – С. 153-161.
Wang, S., Zhou, C., Zhang, D., Chen, L., & Sun, H. (2021). A deep learning framework design for automatic blastocyst evaluation with multifocal images. IEEE Access, 9, 18927-18934.
Haydarova K. ROBOTOTEXNIKADA SENSORLAR VA AKTUATORLAR. MA’LUMOT CHIQARUVCHI DISPLAY TURLARI //QO ‘QON UNIVERSITETI XABARNOMASI. – 2024. – Т. 13. – С. 366-371.
Downloads
Published
Iqtiboslik olish
Issue
Section
License
Copyright (c) 2025 QO‘QON UNIVERSITETI XABARNOMASI

This work is licensed under a Creative Commons Attribution 4.0 International License.