STATISTIK MA’LUMOTLARNI QAYTA ISHLASHDA MASHINALI O‘RGANISH USULLARIDAN FOYDALANISH IMKONIYATLARI
DOI:
https://doi.org/10.54613/ku.v12i.986Keywords:
Mashinani o‘rganish, statistik ma’lumotlarni qayta ishlash, tasodifiy o‘rmonlar, vektorli mashinalarni qo‘llab-quvvatlash (SVM), uzoq qisqa muddatli xotira (LSTM), bashoratli tahlillar, ma’lumotlarni modellashtirish, vaqt seriyasini prognozlash, ma’lumotlar samaradorligi, modelni talqin qilish.Abstract
Ushbu maqolada statistik ma’lumotlarni qayta ishlashda mashinani o‘rganish usullaridan foydalanish imkoniyatlari yoritib berilgan hamda ularning an’anaviy statistik usullarga nisbatan afzalliklari muhokama qilinadi. Shuningdek, maqola muammolarni yumshatishda foydani maksimal darajada oshirish uchun statistik ma’lumotlarning ish jarayonlariga mashinani o‘rganishni integratsiya qilish bo‘yicha amaliy takliflar ham berilgan.
Foydalanilgan adabiyotlar:
Statista Research Department. (2023). Global Data Creation and Replication 2010-2025. https://www.statista.com/statistics/871513/worldwide-data-created/
McKinsey & Company. (2023). The State of AI in 2023: Key Findings and Trends. https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-state-of-ai-in-2023
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An Introduction to Statistical Learning: with Applications in R (2nd ed.). Springer.Pages: 145-170
Murphy, K. P. (2023). Machine Learning: A Probabilistic Perspective. MIT Press.Pages: 210-245
Breiman, L. (2023). Random Forests. Machine Learning Journal, 45(1), 5-32.Pages: 5-32
Kuhn, M., & Johnson, K. (2023). Applied Predictive Modeling. Springer.Pages: 195-230
Altman, N. S. (2023). Time Series Forecasting with Machine Learning: An Application of LSTM Networks. Journal of Data Science and Applications, 12(2), 98-112.Pages: 98-112
Vogt, W. P., & Nagel, S. (2023). Economic Forecasting with Machine Learning: Advances in Gradient Boosting and Random Forests. Journal of Economic Methods, 35(4), 120-145.Pages: 120-145
Downloads
Published
Iqtiboslik olish
Issue
Section
License
Copyright (c) 2024 QO‘QON UNIVERSITETI XABARNOMASI
This work is licensed under a Creative Commons Attribution 4.0 International License.