CHAMOMILLA RECUTITA VA CHAMOMILLA SUAVEOLENS O‘RTASIDAGI TURLARARO DURAGAYLASH: DORIVOR O‘SIMLIKLAR SELEKSIYASIDA ADAPTIV VA FITOKIMYOVIY SALOHIYATNI TAHLILIY BAHOLASH
DOI:
https://doi.org/10.54613/ku.v17i.1406Keywords:
turlararo duragaylash, Chamomilla recutita, Chamomilla suaveolens, seleksiya, adaptatsiya, efir moylari, fitokimyoviy xilma-xillik, segregatsiyaAbstract
Bugungi kunda dorivor o‘simliklar xomashyosi hamda ulardan tayyorlanadigan fitopreparatlarga bo‘lgan ehtiyoj dunyo bozorida yil sayin ortib bormoqda. Bu jarayon, tabiiyki, xomashyo bazasini kengaytirish va mahsulot sifatini barqarorlashtirish masalasini yanada dolzarb qiladi. Amaliy tajribalar shuni ko‘rsatadiki, madaniylashtirilgan dorivor turlarda genetik xilma-xillikning cheklanishi ekologik stress omillari — qurg‘oqchilik, yuqori harorat, sho‘rlanish, patogen va zararkunandalar bosimi kabi sharoitlarda hosildorlik hamda kimyoviy sifat barqarorligini ta’minlashni murakkablashtiradi1,2.
Shu bois seleksiyada yovvoyi qarindosh turlar genofondidan foydalanish, ayniqsa, turlararo duragaylash orqali adaptiv va fitokimyoviy jihatdan boyitilgan seleksion yangi manbalar olish istiqbollari kuchaymoqda[1]. Ushbu tahliliy maqolada Chamomilla recutita va Chamomilla suaveolens (ba’zi ilmiy manbalarda Matricaria chamomilla hamda Matricaria discoidea) bo‘yicha chop etilgan tadqiqotlar tanqidiy tahlil qilinib, turlararo duragaylashning genetik asoslari, ekologik barqarorlikka ta’siri va fitokimyoviy imkoniyatlarini diversifikatsiya qilish imkoniyatlari muhokama qilinadi.
Yevropa, Osiyo va Amerika olimlari tomonidan GC–MS, GC–FID hamda HPLC metodlari orqali olib borilgan izlanishlar romashka turkumida seleksiya faqat “hosil va biomassa” bilan chegaralanmasligi, balki xomashyoning kimyoviy sifat barqarorligini ham qamrab oladigan kompleks yondashuv zarurligini ko‘rsatadi.
1 FAO. (2021) Climate change and plant genetic resources. FAO Press [in English].
2 IPCC. (2022) Climate change 2022: Impacts, adaptation and vulnerability. Cambridge University Press [in English].
3 El Mihyaoui A., et al. (2022) Chamomile (Matricaria chamomilla L.): A review of pharmacological uses and phytochemistry. Biointerface Research in Applied Chemistry, 12(4), 479 [in English].
4 Mailänder L.K., et al. (2022) Phytochemical characterization of chamomile (Matricaria chamomilla). Molecules, 27(23), 8508 [in English].
5 WHO. (2019) WHO monographs on selected medicinal plants. Vol. 4. WHO Press [in English].
Foydalanilgan adabiyotlar:
. FAO. (2021) Climate change and plant genetic resources. FAO Press [in English].
2. IPCC. (2022) Climate change 2022: Impacts, adaptation and vulnerability. Cambridge University Press [in English].
3. El Mihyaoui A., et al. (2022) Chamomile (Matricaria chamomilla L.): A review of pharmacological uses and phytochemistry. Biointerface Research in Applied Chemistry, 12(4), 479 [in English].
4. Mailänder L.K., et al. (2022) Phytochemical characterization of chamomile (Matricaria chamomilla). Molecules, 27(23), 8508 [in English].
5. WHO. (2019) WHO monographs on selected medicinal plants. Vol. 4. WHO Press [in English].
6. Orav A, et al. (2010) Composition of essential oil of aerial parts of Chamomilla recutita. Natural Product Communications, 5, 839–842 [in English].
7. Raala A, et al. (2011) Content and composition of essential oils in some chamomile samples (GC–FID/GC–MS). [PDF source: SemanticScholar] [in English].
8. Rieseberg LH, Widmer A, Arntz AM, Burke JM. (2003) The genetic architecture necessary for transgressive segregation. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1434), 1141–1147 [in English].
9. Ahmadi H, Rahimmalek M, Zeinali H. (2014) Assessment of the genetic variation of chamomile (Matricaria chamomilla L.) populations using phytochemical, morphological and ISSR markers. Biochemical Systematics and Ecology, 54, 190–197 [in English].
10. Okoń S, Surmacz-Magdziak A. (2011) The use of RAPD markers for detecting genetic similarity and molecular identification of chamomile (Chamomilla recutita (L.) Rausch.) genotypes. Herba Polonica, 57(1), 38–47 [in English].
11. Wolfender JL, Litaudon M, Touboul D, Queiroz EF. (2019) Innovative omics-based approaches for natural product discovery. Natural Product Reports, 36(6), 855–868 [in English].
12. Sepp J, et al. (2024) The dry extracts of Matricaria discoidea DC: UPLC–MS/MS profiling and in vivo evaluation. Preprints [in English].
13. Ghasemi M, et al. (2016) Increase of chamazulene and α-bisabolol contents in chamomile under experimental conditions. Foods, 5(3), 56 [in English].
14. Budenkova D.V., Belyavina PA, Panova TM. (2024) Issledovanie protsessa polucheniya ekstrakta tsvetkov romashki aptechnoi (Matricaria chamomilla). Nauchno-tekhnicheskie materialy, 544–548 [in Russian].
15. Tsivelika N, et al. (2018) Phenotypic variation of wild chamomile populations. Scientia Horticulturae [in English].
16. Juraeva A.A. (2018) Izuchenie komponentnogo sostava efirnogo masla tsvetkov romashki aptechnoi, proizrastayushchei v Uzbekistane. CyberLeninka [in Russian].
17. Prokusheva DL. (2024) «Romashki aptechnoi tsvetki»: morfologicheski skhozhie vidy i riski primesei syr’ya. Vedomosti NTsESMP [in Russian].
Downloads
Published
Iqtiboslik olish
Issue
Section
License
Copyright (c) 2026 QO‘QON UNIVERSITETI XABARNOMASI

This work is licensed under a Creative Commons Attribution 4.0 International License.